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DAMPED VIBRATION OF COMPOSITE PLATES
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Mechanics for the analysis of damping in composite plates with multiple
resistively shunted piezoelectric layers are developed. The mixed ®eld
piezoelectric laminate theory is extended to include distributed passive electric
circuitry embedded or attached to piezoelectric layers. The equations of motion
for the coupled laminate/circuitry system are formulated and exactly solved for
the case of simply-supported plates. The modal frequencies and damping are
directly calculated from the complex eigenvalues of the damped plate. The
forced vibration of the damped piezoelectric composite plate is also directly
predicted. Numerical results for a cross-ply graphite/epoxy plate with surface
mounted resistively shunted piezoceramic layers are presented. The results show
that for each mode there is an optimal resistance value which adds signi®cant
modal damping. Away from this optimal value the modal damping gradually
reduces to zero. Simultaneous shifting of the corresponding modal frequency to
a higher value occurs over this optimal resistance range. The calculated
frequency response of the damped plate illustrates that substantial vibration
control of select modes can be obtained by proper tuning of the shunting
resistive circuit.
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1. INTRODUCTION

The continuous requirements imposed on many new structural applications for
improved vibroacoustic response and weight reduction mandate the development
of new damped structural concepts and damping mechanisms. One such
possibility is the development of composite structures passively damped via
embedded piezoelectric elements. Piezoelectric layers introduce the unique
capability to convert strain and/or kinetic energy to electric energy during a
vibration cycle and vice versa, thus enabling the dissipation of electric energy
through passive electric circuitry (i.e., shunt resistors). Compared to other
techniques which typically introduce high damping, such as constrained
interlaminar viscoelastic layers or active damping with feedback control, the
concept of passive piezoelectric damping exhibits some very desirable
characteristics, such as: the level of damping may be spontaneously or
periodically modi®ed, by varying the properties of the passive electric elements
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(resistors, capacitors, etc.) or by recon®guring the electric circuitry; the damping
improvement does not reduce the stiffness of the laminate, as is the case with
shear viscoelastic damping layers; and the technique requires minimal hardware
which may even be encapsulated into the laminate, thus adding minimal weight
to the structure. Consequently, the approach may be very suitable for damping
vibrations in rotating or moving components, such as turbomachinery blades,
helicopter blades, and so forth.
While substantial work has been reported in the area of active piezoelectric

damping, as summarized in recent reviews by Crawley [1] and Rao and Sunar
[2], most of the reported work on passive piezoelectric damping has been limited
to simple laminate and structural (mostly beam) con®gurations. Hagood and
Von Flotow [3] ®rst studied the use of passive piezoelectric elements to dampen
beam structures. Law et al. [4] have reported simpli®ed models and experimental
results for piezoelectric materials shunted by a load resistor. Davis and Lesieutre
[5] developed a method for predicting the passive damping in beams with
resistively shunted piezoelectric patches based on the strain energy dissipation
approach, and reported experimental results. Koshigoe and Murdock [6]
reported a simpli®ed analytical formulation for plates with passive piezoelectric
elements. Wang et al. [7] reported work on a semi-active vibration control
approach for beams with piezoelectric elements combining passive electric
components with an active controller concept. Yarlagadda et al. [8] presented
micromechanics and experimental results for composites with resistively shunted
piezoceramic ®bers.
Although the previous work has provided valuable insight into the

effectiveness of the technique, development of ef®cient methodologies enabling
analysis of more complex laminate and structural con®gurations seems to be
required. The present paper presents a coupled electromechanical theory for
composite laminates with multiple piezoelectric layers connected to passive
electric circuits, and a Ritz solution for predicting the modal damping, modal
frequencies and damped response of composite piezoelectric plates. The laminate
mechanics combine single-layer kinematic assumptions for the displacements
with a layerwise variation of the electric potential. The formulation considers the
presence of distributed passive electric components embedded or attached to the
piezoelectric layers, thus enabling coupled and ef®cient representations of the
integrated laminate±electric circuit system. Governing equations of motion are
developed and solved in state±space form for simply supported plates. The
complex eigenvalues are calculated and used to evaluate the modal damping and
frequencies of the plate. The frequency response of the damped plate is also
directly calculated from the equations of motion.

2. PIEZOLAMINATES WITH PASSIVE ELECTRIC CIRCUITRY

2.1. GOVERNING MATERIAL EQUATIONS

This section describes the theoretical foundation for piezoelectric-composite
laminates (identi®ed for brevity with the term piezolaminates) having arbitrary
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con®gurations of piezoelectric layers and composite plies, as shown schematically
in Figure 1. Each piezoelectric layer may be either connected to a passive electric
circuit containing resistors, capacitors and inductors, or may have an electric
potential applied. A Cartesian co-ordinate system OxZz is de®ned, such that the
axes x and Z lie on the mid-plane Ao , while the axis z is perpendicular to the
plane of the laminate. Each ply is generally assumed to consist of a linear
piezoelectric material with constitutive equations of the form

si � CE
ij Sj ÿ eikEk, Dl � eljSj � eSlkEk, �1�

where i, j=1, . . . , 6 and k, l=1, . . . , 3; si and Si are the mechanical stresses
and engineering strains in vectorial notation; Ek is the electric ®eld vector; Dl is
the electric displacement vector; Cij is the elastic stiffness tensor; eij is the
piezoelectric tensor; and elk is the electric permittivity tensor of the material.
Superscripts E and S indicate constant electric ®eld and strain conditions,
respectively. The axes 1, 2, and 3 of the material are parallel to the Cartesian co-
ordinate axes x, Z, z, respectively.
The strain±displacement and electric ®eld±potential relationships are

Sij � 1=2�ui,j � uj,i�, Ek � ÿf,k, �2�
where u, v, w are the displacements, and f is the electric potential.
The equations of motion consist of the stress equilibrium equations

sij,j ÿ r�ui � 0 �3�
and the electric displacement equilibrium equation [9]

Di,i � qe, �4�
where qe represents the speci®c charge from distributed electric sources.

2.2. LAMINATE THEORY

A typical con®guration of a piezolaminate with an arbitrary number of
piezoelectric layers connected to distributed electric circuits is shown in
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Figure 1. Piezoelectric laminate with passive electric circuitry: (a) typical con®guration, (b)
assumed ®elds for electric potential and in-plane displacements.
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Figure 1(a). Some of the elements of the electric circuits may be embedded or
integrated into the laminate. The theoretical framework of the so called mixed-
®eld piezoelectric laminate theory [10] provided the basis for the mechanics of
piezoelectric laminates with distributed passive electric components. The theory
utilizes both displacements and electric potential as generalized state variables,
yet, it combines different types of through-the-thickness approximations of
the state variables. Speci®cally, linear displacement ®elds are assumed for the
displacements u, v, while a layerwise electric potential ®eld is considered through
the laminate consisting of N discrete continuous segments (Figure 1(b)). Previous
work [10, 11] has shown that such kinematic assumptions can capture the
electric heterogeneity through-the-thickness induced by the embedded
piezoelectric layers, and will accurate model thin and/or moderately thick
piezoelectric shell laminates with minimal computational cost. The displacements
and electric potential of the mixed-®eld theory take the form

u�x,Z,z,t� � uo�x,Z,t� � zbx�x,Z,t�, v�x,Z,z,t� � vo�x,Z,t� � zby�x,Z,t�,

w�x,Z,z,t� � wo�x,Z,t�, f�x,Z,z,t� �
XN
j�1

fj�x,Z,t�Cj�z�, �5�

where uo, vo, wo are displacements on mid-surface; superscript j indicates the
points zj at the beginning and end of each discrete layer; fj is the electric
potential at each point zj (see Figure 1); Cj(z) are interpolation functions; and
bx , bZ are the rotation angles. In the context of equation (5), the engineering
strains become

Si�x,Z,z,t� � So
i �x,Z,t� � zki�x,Z,t�, i � 1, 2, 6; S3�x,Z,z,t� � 0;

Si�x,Z,z,t� � So
i �x,Z,t�, i � 4, 5; �6�

where So and k are the strain and curvature vectors at the reference surface. The
electric ®eld vector also becomes

Ei�x,Z,z,t� �
XN
j�1

Ej
i�x,Z,t�Cj�z�, i � 1, 2;

E3�x,Z,z,t� �
XN
j�1

Ej
3�x,Z,t�Cj

,z�z�,
�7�

where {Ej} is the generalized electric ®eld vector de®ned as

Ej
1 � ÿfj

,x, Ej
2 � ÿfj

,Z, Ej
3 � ÿfj: �8�

2.2.1. Equations of motion

The laminate equations of motion are derived by integrating equations (3, 4)
through-the-thickness of the laminate in terms of generalized forces
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N1,x �N6,Z ÿ �rA�uo � rB�bx� � ÿq5,
N6,x �N2,Z ÿ �rA�vo � rB�bZ� � ÿq4, N5,x �N4,Z ÿ rA �wo � ÿq3,

�9�

generalized moments

M1,x �M6,Z ÿN5 ÿ �rB�uo � rD�bx� � ÿp5,
M6,x �M2,Z ÿN4 ÿ �rB�vo � rD�bZ� � ÿp4,

�10�

and the rate of change of generalized electric charges

_Dm
1,x � _Dm

2,Z ÿ _Dm
3 � ÿ�Jm3 , m � 1, . . . , N, �11�

where q and p indicate surface tractions and moments, respectively; subscripts 4,

5 indicate shear and subscripts 1, 2, 3 normal components; �Jm3 is the electric ¯ux

along the thickness direction at point zm, usually corresponding to an electrode

surface. The resultant forces Ni , Mi and electric displacements Dm
i are de®ned

and related to the generalized strain and electric ®eld of the piezoelectric

laminate as follows:

Ni �
�h
0

si dz � AijS
o
j � Bijkj ÿ

XN
m�1

�E m
3iE

m
3 , i, j � 1, 2, 6,

Ni �
�h
0

si dz � AijS
o
j ÿ

XN
m�1

�E m
ikE

m
k , i, j � 4, 5, k � 1, 2,

Mi �
�h
0

siz dz � BijS
0
j �Dijkj ÿ

XN
m�1

Ê m
3iE

m
3 , i, j � 1, 2, 6,

�12�

Dm
i �

�h
o

hD1, D2iCm�z� dz � �E m
ij S

o
j �

XN
n�1

Gmn
ii En

i , i � 1, 2, j � 4, 5,

Dm
3 �

�h
0

D3Cm
,z�z� dz � �E3jS

o
j � Ê3jkj �

XN
n�1

Gmn
33 E

n
3, j � 1, 2, 6:

�13�

In the above equations, [A], [B], and [D] are the stiffness matrices of the

laminate, ��Em� and �Ê m� are the piezoelectric laminate matrices, [Gmn] are the

laminate matrices of electric permittivity, and rA, rB, rD are the generalized

densities, expressing the mass, mass coupling and rotational inertia per unit area,

of the laminate, respectively. The de®nitions of all laminate matrices are shown

in Appendix A.

Considering a con®guration of passive circuits with resistive and inductive

elements interfaced to the terminal surfaces (Figure 1(a)) of piezoelectric layers,

the electric potential {fp} and electric ¯ux {Jp} in the circuitry are related by the

Kirchoff 's law
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fP�t� � �r�JP�t� � �l� _JP�t�, �14�
where [r] and [l] are resistance and inductance matrices per unit area of the
laminate. If an electric circuit is connected to the laminate at point zm, the
compatibility conditions at this interface require that the electric potentials are
equal and the electric ¯ux between the laminate and the circuit is preserved

fm � fP, �Jm3 � JP: �15�

3. LAMINATED PIEZOELECTRIC PLATES

An exact solution of the governing equations (9)±(11) was developed for
simply-supported rectangular plates with orthotropic composite plies and
piezoelectric layers polarized along the thickness direction (C16=C26= e36=0).
Axes x, Z are assumed parallel to the sides of the plate. Equations (9, 10) for the
balance of forces and moments yield ®ve differential equations of the form:

A11S
o
1,x � A12S

o
2,x � B11k1,x � B12k2,x � A66S

o
6,Z � B66k6,Z ÿ

XN
m�1

�E m
31E

m
3,x

ÿ�rA�uo � rB�bx� � ÿq5,

A66S
o
6,x � B66k6,x � A21S

o
1,Z � A22S

o
2,Z � B21k1,Z � B22k2,Z ÿ

XN
m�1

�E m
32E

m
3,Z

ÿ�rA�vo � rB�bZ� � ÿq4,

A55S
o
5,x ÿ

XN
m�1

�Em
15E

m
1,x � A44S

o
4,Z ÿ

XN
m�1

�Em
24E

m
2,Z ÿ rA �wo � ÿq3, �16�

B11S
0
1,x � B12S

o
2,x �D11k1,x �D12k2,x � B66S

o
6,Z �D66k6,Z ÿ

XN
m�1

Ê m
31E

m
3,x

ÿ�rB�uo � rD�bx� � ÿp5,

B66S
o
6,x �D66k6,x � B21S

o
1,Z � B22S

o
2,Z �D21k1,Z �D22k2,Z ÿ

XN
m�1

Ê m
32E

m
3,Z

ÿ�rB�vo � rD�bZ� � ÿp4,
while the generalized charge conservation equation (11), may yield N additional
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equations:

�En
15

_So
5,x �

XN
m�1

Gnm
11

_E m
1,x � �En

24
_So
4,Z �

XN
m�1

Gnm
22

_E m
2,Z

ÿ��En
31

_So
1 � �En

32
_So
2 � Ên

31
_k1 � Ên

32
_k2 �

XN
m�1

Gnm
33

_E m
3 � � ÿ�Jn3, n � 1, . . . ; N: �17�

Incorporating equations (5, 6, 8) into equations (16, 17), a coupled system
of N+5 differential equations with N+5 unknowns results. The boundary
conditions for a simply supported piezoelectric plate are: vo(x, 0)=(vo(x
LZ)= uo(0, Z)= uo(Lx, Z)=wo(x, 0)=wo(x, LZ)=wo(0, Z)=wo(Lx, Z)=0 and
fj(x, 0)=fj(x, LZ)=fj(0, Z)=f j(Lx, Z� � 0. A fundamental set of mode shapes
satisfying the boundary conditions is

uo�x,Z,t� � Uo
kl�t� cos�ax� sin�bZ�, vo�x,Z,t� � Vo

kl�t� sin�ax� cos�bZ�;
wo�x,Z,t� � V0

kl�t� sin�ax� sin�bZ�,
bx�x,Z,t� � bxkl�t� cos�ax� sin�bZ�, bZ�x,Z,t� � bZkl�t� sin�ax� cos�bZ�,
fj�x,Z,t� � Fj

kl�t� sin�ax� sin�bZ�; a � kp=Lx; b � lp=LZ;

�18�

where Lx , LZ are the dimensions of the plate and k, l=1, 2, 3, . . . are the
number of semi-wavelengths along the x and Z directions of the respective mode,
indicated as mode (k, l). For example, substitution of k=1 and l=1 into
equations (18) yields the fundamental mode shape (1, 1); k=2, l=1 yields the
mode shape (2, 1) with a modal line (w=0) along x=Lx/2; k=1, l=2 yields
the mode shape (1, 2) with a modal line (w=0) along Z=LZ/2 and so forth.
Substituting the fundamental solution (18) into the generalized equations of

motion (16, 17) the following linear system of N+5 dynamic equations results

for each {k, l} vibration mode of the plate:

�a2A11 � b2A66�Uo
kl � ab�A12 � A66�Vo

kl � �a2B11 � b2B66�bxkl � ab�B12 � B66�bZkl

ÿ
XN
m�1

a�E m
31F

m
kl � �rA �Uo

kl � rB�bxkl� � q5kl ,

ab�A12 � A66�Uo
kl � �b2A22 � a2A66�Vo

kl � ab�B12 � B66�bxkl � �b2B22 � a2B66�bnkl

ÿ
XN
m�1

b�E m
32F

m
kl � �rA �Vo

kl � rB�bnkl� � q4kl ,

�a2A55 � b2A44�Wo
kl � aA55bxkl � bA44bZkl �

XN
m�1
�a2�E m

15 � b2�Em
24�Fm

kl � r4 �Wo
kl � q3kl ;
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�a2B11 � b2B66�Uo
kl � ab�B12 � B66�Vo

kl � �a2D11 � b2D66�bxkl � ab�D12 �D66�bZkl

ÿ
XN
m�1

aÊm
31F

m
kl � �rB �Uo

kl � rD�bxkl� � p5kl,

ab�B12 � B66�Uo
kl � �b2B22 � a2B66�Vo

kl � ab�D12 �D66�bxkl � �b2D22 � a2D66�Bnkl

ÿ
XN
m�1

bÊ m
32F

m
kl � �rB �Vo

kl � rD�bZkl� � p4kl,

a�E n
31

_Uo
kl � b�En

32
_Vo
kl ÿ �a2�E n

15 � b2�E n
24� _Wo

kl ÿ a��E n
15 � Ê n

31� _bZkl ÿ b��E n
24 � Ê n

32� _bZkl

�
XN
m�1
�ÿa2Gnm

11 ÿ b2G nm
22 � G nm

33 � _Fm
kl� � �J n

3kl, n � 1 ; . . . , N: �19�

Considering an active±passive laminate, with Np piezoelectric layers connected to

passive circuitry while the remaining piezoelectric layers are con®gured as

actuators (electric potential applied on both surfaces), the electric potential

vector can be subdivided into a passive component Fp representing the electric

output at passive piezoelectric layers and a forced or active component FA

representing the voltage imposed on the active layers, such that {F}={FP; FA}.

Collecting the coef®cients in equation (19) and separating the passive and active

electric potential components, the system of dynamic equations is reduced to the

following 5+Np equations, which can be written in matrix form:

�Muu�f�Uklg � �Kuu�fUklg � �KPP
uf �fFP

klg � fFkl�t�g ÿ �KPA
uf �fFA

kl�t�g,
�KPP

fu �f _Uklg � �KPP
ff�f _FP

klg ÿ fJP3kl�t�g � 0, �20�
where U={Uo, Vo, Wo, bx, bZ} and F={F1, . . . , FN}={FP; FA} are the

unknown gains of each vibration mode in equation (18). Submatrices Kuu , Kuf,

Kff, and Muu are coef®cient matrices depending on the generalized elastic,

piezoelectric, permittivity and mass laminate matrices, respectively, and the

mode order kl. Superscripts P and A indicate the partitioned submatrices in

accordance with the selected passive and active con®guration, respectively. The

left-hand side includes the unknown electromechanical state {U; Fp, Jp} which

contains the displacements, the electric potential and electric ¯ux at the passive

piezoelectric layers. The right-hand side includes the excitation of the plate in

terms of mechanical loads and applied voltages on the actuators. The above

dynamic system is combined with the equation of the passive circuitry (14) to

yield the dynamic equations of the damped piezoelectric plate. Assuming a

resistive circuit, the dynamic equations in state±space form are
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�Muu� 0 0
0 I 0
0 0 �KPP

ff�

24 35 f _Vg
f _Ug
f _Fpg

8<:
9=; �

0 ÿ�Kuu� ÿ�KPP
uf �

I 0 0
�ÿKPP

fu � 0 �r�ÿ1

24 35 fVg
fUg
fFpg

8<:
9=;

�
fF�t�g ÿ �KPA

uf �fFA�t�g
0
0

8<:
9=;, �21�

where subscripts kl are implied on state variables and {V} is the rate of change
of the displacement vector. This dynamic system may provide either the free
vibration and/or the frequency response of the damped plate. Assuming that
{X}={Uo, Vo, Wo, bx, bZ, F

P}, equation (21) can be written in standard form

�A�f _Xkl�t�g � �B�fXkl�t�g � fPkl�t�g: �22�

3.1. MODAL CHARACTERISTICS

Assuming free vibration conditions (P=0) and state variables of the form
{Xkl(t)}={Xkl}e

st, equation (22) produces a generalized eigenvalue problem for
each mode kl:

s�A�fXg � �B�fXg, �23�
which provides 10+Np eigenvalues (poles). The ®rst 10 poles are 5 conjugate
complex pairs s�kl corresponding to one ¯exural, two extensional and two shear
modes through the thickness of the plate. The remaining Np eigenvalues are
negative real poles corresponding to time constants of the formed electric
circuitry. The modal frequency and damping ratio of the structural modes are
directly calculated from the magnitude and real part of the complex poles

okl � jjs�kljj; zkl � Re�s�kl�=okl: �24�

3.2. FREQUENCY RESPONSE

Assuming harmonic state variables {X(t)}={X}e jot and harmonic force and
applied electric potential Fe jot and FA e jotequation (22) provides a linear system
of 10�Np equations with complex coef®cients:

�jo�A� ÿ �B��fXklg � fPklg: �25�
Solution of the system yields the complex modal amplitude Xkl , which represents
the participation factor of the kl mode to the frequency response of the plate at
any point, in the context of equation (18). The superposition of all modal
amplitudes yields the response of the plate at frequency o.
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4. NUMERICAL RESULTS

A simply supported [p/0/90/90/0/p] cross-ply Graphite/Epoxy composite
square plate with surface attached piezoceramic (PZT-4) or piezopolymer
(PVDF) layers was modelled using the developed mechanics. The 0� plies are
aligned with the x-axis. The damped modal characteristics of the plate and its
frequency response were predicted.
The nominal thickness of each composite ply was t1=0�375 mm and of each

piezoelectric layer was tp=0�250 mm, thus resulting in a total plate thickness
h=2 mm. The free length of the plate along the x and Z axes was
Lx=h � LZ=h � 157: Material properties are provided in Table 1. Unless
otherwise stated, both piezoelectric layers were assumed to be passively shunted,
each with a resistor of equal distributed resistance per unit area r (see Figure 2).
The assumed layerwise electric potential ®eld has three linear segments (N=4)
with four generalized electric potential de®ned at the bottom and top of each
piezoelectric layer, i.e., f1 at z=ÿh/2, f2 at z=ÿh/2+ tp , f3 at z= h/2ÿ tp
and f4 at z= h/2. The inner terminals of the piezoelectric layers were grounded
(f2=f3=0 V) while the outer terminals remained free, although connected to
the resistors, leading to fp={f1, f4} and fA={f2=0, f3=0} V.

4.1. MODAL CHARACTERISTICS

The predicted modal frequencies and modal damping ratios of the plate with
piezoceramic (PZT-4) passive layers were calculated as a function of the speci®c

TABLE 1

Mechanical properties (eo=8�856 10ÿ12 farad/m � electric permittivity of air)

Gr/Epoxy PZT-4 PVDF

Elastic properties:
E11 (GPa) 132�4 81�3 4
E22 (GPa) 10�8 81�3 4
E33 (GPa) 10�8 64�5 4
G23 (GPa) 3�6 25�6 1�5
G13 (GPa) 5�6 25�6 1�5
G12 (GPa) 5�6 30�6 1�5
�12 0�24 0�33 0�3
�13 0�24 0�43 0�3
�23 0�49 0�43 0�3
Piezoelectric coefficients (10ÿ12 m/V):
d31 0 ÿ122 ÿ23
d32 0 ÿ122 ÿ23
d24 0 495 0
d15 0 495 0
Electric permittivity:
e11/eo 3�5 1475 12�4
e22/eo 3 1475 12�4
e33/eo 3 1300 12�4
Mass density r (kg/m3)

1578 7600 1780
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resistance r of the passive circuitry. The predicted variation of the damping ratio
corresponding to the fundamental ¯exural mode is shown in Figure 3. The
damping remains practically zero for low values of speci®c resistance r, because
no energy is dissipated at the electric circuit and the viscoelastic material
damping of the composite and piezoelectric plies was neglected. As the resistance
increases, the modal damping starts to increase gradually because more electric
energy is dissipated in the resistors. Interestingly, the modal damping reaches a
maximum value beyond which further increase in resistance seems to lead to
gradual reductions until it becomes zero for very high resistance values. In
addition to this important tuning effect, the results demonstrate that signi®cant
amounts of passive piezoelectric damping may be introduced for the
fundamental mode provided that a tuned resistance is used. The predicted
dependence of modal damping on the shunting resistance has been
experimentally observed on beam specimens by Davis and Lesieutre [5]. The
resistors form a low pass ®lter with the capacitance of the piezoceramic layers.
At the maximum damping value the cut-off frequency approaches the natural
frequency of the plate allowing for maximum electric ¯ux through the resistor.
Higher resistance values gradually shift the cut-off frequency below the natural
frequency of the plate and an increasing portion of electric ¯ux is stored in the
piezoelectric capacitor, thus the electric ¯ux through the resistor and the amount
of dissipated electric energy is decreased, resulting in the predicted progressive
damping reduction.
It may be also observed in Figure 3 that the natural frequency remains

constant at low resistance values and gradually shifts to a higher value as the
resistance is increased. The corresponding modal frequency shifting occurs near
the point of maximum damping. As mentioned in the previous paragraph, the
shunting resistance controls what portion of the electric ¯ux generated in the
piezoelectric layers is either dissipated in the resistor or stored in the piezoelectric
capacitor during a vibration cycle. As the resistance gradually increases, higher
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J
r

PZT-4

0°

90°

Figure 2. [p/0/90]s Laminate with two resistively shunted piezoceramic layers.
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portions of electric energy are either dissipated or stored, thus the elastic strain
energy in the laminate is reduced and the plate stiffens. This explains why the
natural frequency shifts to a higher value near the point of maximum modal
damping.
The variation of the natural frequencies of the four ¯exural modes (1,1 ), (1,2),

(2,1) and (2,2) is shown in Figure 4. It seems that the higher natural frequencies
shift at lower resistance values. The physical explanation for this phenomenon
was provided in the previous two paragraphs. Previous studies [11] on the free-
vibration response of piezoelectric plates have indeed shown lower natural
frequencies with closed-circuit conditions imposed on the piezelectric layers
(r10) and higher natural frequencies with open-circuit conditions (r11). These
results are shown with open and closed symbols in Figure 4 and their agreement
validates the natural frequency predictions of the present approach. The results
illustrate that gradual variation between these extreme values is possible with
resistively shunted piezoelectric laminates.
The predicted effect of shunting resistance on the modal damping of higher

¯exural modes (1, 2), (2, 1), (2, 2) is shown in Figure 5. It may be observed that
the dependence of the modal damping of higher ¯exural modes to the shunting
resistance was similar to the fundamental mode (1, 1). Yet, each mode reaches
damping peaks which differ in value and occur at lower resistance as the mode
order increases. The predicted overall dependence of natural frequency,
maximum modal damping and corresponding optimal resistance values on the
¯exural mode order (k, l) is shown in Figure 6. Figure 6(a) shows the predicted
lower and upper bounds of the modal frequencies, corresponding to zero (r=0)
and in®nite (r=1) resistance, respectively. Figure 6(b) shows the maximum
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Figure 3. Effect of resistance on the modal damping and frequency of the fundamental mode
(1,1). [p/0/90]s Gr/Epoxy plate with PZT-4 layers; Ð, modal damping; Ð �Ð, modal frequency.
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modal damping which can be obtained with a tuned resistor for each mode, and
Figure 6(c) shows the optimal resistance values which result in maximum modal
damping. Figure 6(b) illustrates that at long wavelengths (low k or l) the
maximum modal damping depends on the mode order. All results demonstrate
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Figure 4. Effect of resistance on the modal frequencies of the [p/0/90]s plate with PZT-4 piezo-
ceramic layers: Ð, mode (1,1); Ð �Ð, mode (1,2); . . . . . , mode (2,1); ± ±, mode (2,2); *, closed-
circuit; * open-circuit.
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Figure 5. Effect of resistance on the modal damping of the [p/0/90]s plate with PZT-4 piezo-
ceramic layers: Ð, mode (1,1); Ð �Ð, mode (1,2), . . . . . mode (2,1); ± ±, mode (2,2).
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Figure 6. Dependence of modal characteristics on mode order (k, l); (a) modal frequency fkl for
zero and in®nite resistance: Ð, r=0; - - - -, r=1, O/m2; (b) maximum modal damping zkl; (c)
corresponding optimal resistance rkl: *, k=1; * k=2; &, k=3; +, k=4; 6, k=5; [p/0/90]s
plate with PZT-4 layers; k, l indicate the number of semi-wavelengths along x and Z axes, respect-
ively.
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that signi®cant amounts of passive piezoelectric damping may be introduced in
the plate for speci®c modes provided that a tuned resistance is used.

4.2. FREQUENCY RESPONSE

The cumulative effect of resistively loaded piezoelectric layers on the forced
vibration of the plate was also investigated for various values of passive
resistance r. Figure 7 shows the frequency response of the lateral de¯ection w at
point �x=Lx, y=LZ� � �1=4, 1=4� when a harmonic uniform pressure of 1 kPa
amplitude is applied over the area of the plate. Figure 7 clearly illustrates that
select vibration modes can be effectively damped by changing the resistance of
the circuit. The shifting of the resonance peaks is also evident. Yet, Figure 7 also
depicts the dif®culty of the approach to dampen all modes simultaneously.
Simultaneous vibration control of many modes will require special design
consideration, such as incorporation of multiple passive piezoelectric layers, each
one shunted with individually tuned resistors. The value of the present
mechanics in achieving such optimal design con®gurations is apparent.
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Figure 7. Frequency response functions of a square [p/0/90]s, plate subject to uniform harmonic
pressure for various resistance values; (a) dampening of higher modes: - - - -, r=10; Ð, r=1000
O/m2 (b) dampening of ®rst mode: Ð, r=5000; Ð � �Ð, r=50 000 O/m2. De¯ections are at
point (x/Lx, Z/LZ)= (1/4,1/4).
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4.3. EFFECT OF PIEZOELECTRIC MATERIAL

In addition to PZT-4 which is a hard piezoceramic material, the dynamic
characteristics of the plate using a soft piezoceramic (PZT-5J) and a
piezopolymer (PVDF) material were predicted to illustrate the effectiveness of
various piezoelectric materials. The maximum modal damping and shifting in
natural frequencies of the plate with resistively shunted PZT-5J piezoceramic
layers were found to be slightly higher than the ones predicted with PZT-4, thus
they are not shown. The modal frequency and damping variations for a plate
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Figure 8. Effect of resistance on the modal frequencies of the [p/0/90]s plate with PVDF layers:
Ð, mode (1, 1); Ð �Ð, mode (1, 2); . . . . . , mode (2, 1); ± ±, mode (2, 2).
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Figure 9. Effect of resistance on the modal damping of the [p/0/90]s plate with PVDF layers:
Ð, mode (1, 1); Ð �Ð, mode (1, 2); . . . . . , mode (2, 1); ± ±, mode (2, 2).



PASSIVE PIEZOELECTRIC DAMPING 883

with resistively loaded PVDF layers are shown in Figures 8 and 9, respectively.
Clearly, much lower damping levels may be added to the structure with this
piezopolymer, as a result of its substantially lower moduli and piezoelectric
coef®cients. The shifting in natural frequencies between low and high resistance
values is rather negligible (Figure 8).

4.4. EFFECT OF PIEZOELECTRIC LAYER THICKNESS

Figure 10 shows the predicted damping of the fundamental mode for various
thicknesses of PZT-4 piezoceramic layers shown as fractions of their nominal
thickness tp=0�250 mm. The maximum modal damping increases with the
thickness of the piezoelectric layers until a saturation thickness is reached,
beyond which the maximum damping may decrease. Signi®cant modal damping
levels may be attained even with very thin piezoceramic layers. The
corresponding values of optimal resistance depend on the thickness of the
piezoelectric layers, as this affects both the capacitance of the layer and the
fundamental frequency of the plate.
Overall, the results indicate that signi®cant passive damping may be added in

plate structures with passive piezoceramic layers. Yet, the levels of the passive
damping strongly depend on a multitude of parameters, including the resistance
value, mode order, thickness and type of the piezoelectric material. Therefore,
special consideration is required in the design of such damped plates including
the tuning of the electric circuits. The value of the present mechanics in realizing
such optimal design con®gurations is apparent.
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5. SUMMARY

Analytical models for predicting the passive damping and damped dynamic
response of active±passive composite plates with multiple resistively shunted
piezoelectric layers were presented. The previously developed coupled mixed
piezoelectric laminate theory was extented to include distributed passive electric
circuitry embedded or attached to the piezoelectric layers. The equations of
motion for such passive laminate systems were formulated and exactly solved for
the case of simply-supported plates. The complex eigenvalues of the damped
plate were calculated to obtain the modal frequencies and damping. The forced
vibration of the plate was also calculated. Case studies on a cross±ply graphite/
epoxy plate with two surface mounted resistively shunted piezoceramic patches
were presented. The results show that an optimal range of resistance values
exists over which signi®cant passive damping is added to a speci®c mode of the
plate. Outside of this resistance interval the damping gradually reduces to zero.
Shifting in the corresponding resonance frequency may also occur over this
critical resistance range. The dependance of passive damping on the mode order,
the type of piezoelectric material and the thickness of the piezoelectric layer was
investigated. Overall, it was clearly illustrated that substantial vibration control
of select modes can be obtained by proper con®guration of the piezoelectric
laminate and tuning of the resistive elements. Ongoing research is directed
towards the development of approximate formulations for the analysis of
damping in generalized curvilinear structures and the experimental veri®cation of
the piezoelectric damping concept.
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APPENDIX A: LAMINATE MATRICES

Stiffness matrices [A], [B], and [D]:

hAij, Bij, Diji �
XL
l�1

�zl�1
zl

Cijh1, z, z2i dz, i, j � 1, 2, 6,

Aij �
XL
l�1

�zl�1
zl

Cij dz, i, j � 4, 5:

�A1�

Piezoelectric matrices ��E m� and �Ê m�

h�E m
ij , Ê

m
ij i �

XL
l�1

�zl�1
z1

eijCm
,z�z�h1, zi dz, i � 3, j � 1, 2, 6,

�E m
ij �

XL
l�1

�zl�1
zl

eijCm�z� dz, i � 1, 2, j � 4, 5:

�A2�

Matrices of electric permittivity [Gmn]:

Gmn
ii �

XL
l�1

�zl�1
zl

eiiCm�z�Cn�z� dz, i � 1, 2,

Gmn
33 �

XL
l�1

�zl�1
zl

e33Cm
,z�z�Cn

,z dz:

�A3�

Generalized densities rA, rB, rD:

hrA, rB, rDi �
XL
l�1

�zl�1
z1

rlh1, z, z2i dz, �A4�

where L is the number of plies in the laminate.
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